Calibrating the Quikscat/SeaWinds Radar for measuring rainrate over the oceans

نویسندگان

  • David E. Weissman
  • Mark A. Bourassa
  • James J. O'Brien
  • Jeffrey S. Tongue
چکیده

This effort continues a study of the effects of rain, over the oceans, on the signal retrieved by the SeaWinds scatterometer. It is determined that the backscatter radar cross section can be used to estimate the volumetric rain rate, averaged horizontally, across the surface resolution cells of the scatterometer. The dual polarization of the radar has a key role in developing this capability. The relative magnitudes of the radar backscatter depends on the volumetric rain rate, the rain column height and surface wind velocity, the viewing angle, as well as the polarization (due to the oblateness of raindrops at the higher rain rates). The approach to calibrating the SeaWinds normalized radar cross section (NRCS) is to collect National Weather Service Next Generation Weather Radar (NEXRAD) radar-derived rain rate measurements (4-km spatial resolution and 6-min rotating cycles) colocated in space (offshore) and time with scatterometer observations. These calibration functions lead to a Z–R relationship, which is then used at mid-ocean locations to estimate the rain rate in 0.25 or larger resolution cells, which are compared with Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) rain estimates. Experimental results to date are in general agreement with simplified theoretical models of backscatter from rain, for this frequency, 14 GHz. These comparisons show very good agreement on a cell-by-cell basis with the TMI estimates for both wide areas (1000 km) and smaller area rain events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of SeaWinds Measurements in the Presence of Rain Using Collocated TRMM PR Data

The scatterometer SeaWinds on QuikSCAT measures ocean winds via the relationship between the wind and the normalized radar backscatter cross-section (σ◦) from the ocean surface. Scattering and attenuation from falling rain droplets along with ocean surface perturbations due to rain change the backscatter signature of the waves induced by near-surface winds. A simple model incorporates the effec...

متن کامل

Validation of QuikSCAT Radiometer Rain Rates using the TRMM Microwave Radiometer

The primary mission of the SeaWinds scatterometer on the QuikSCAT satellite is to infer surface wind vector from ocean backscatter measurements. Occasionally the backscatter measurements are contaminated by the presence of rain; therefore a reliable method of identifying rain is needed. Fortunately, the SeaWinds scatterometer simultaneously obtains active (scattering) and passive (emission) mea...

متن کامل

Improved resolution backscatter measurements with the SeaWinds pencil-beam scatterometer

The SeaWinds scatterometer was launched on the NASA QuikSCAT spacecraft in June 1999 and is planned for the Japanese ADEOS-II mission in 2000. In addition to generating a global Ku-band backscatter data set useful for a variety of climate studies, these flights will provide ocean-surface wind estimates for use in operational weather forecasting. SeaWinds employs a compact “pencil-beam” design r...

متن کامل

An advanced ambiguity selection algorithm for SeaWinds

SeaWinds on QuikSCAT, a spaceborne Ku-band scatterometer, estimates ocean winds via the relationship between the normalized radar backscatter and the vector wind. Scatterometer wind retrieval generates several possible wind vector solutions or ambiguities at each resolution cell, requiring a separate ambiguity selection step to give a unique solution. In processing SeaWinds on QuikSCAT data, th...

متن کامل

A QuikScat/SeaWinds Sigma-0 Browse Product

Following up on the successful NSCAT mission, the QuikScat/SeaWinds scatterometer (Qscat) provides normalized radar cross section ( o) measurements of the Earth's surface at unprecedented coverage and resolution. While originally designed for wind observation, scatterometers have proven useful in a variety of land and ice studies. To aid in the selection of regions and time periods for study, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003